SCPS123E-MARCH 2005-REVISED OCTOBER 2007 #### **FEATURES** - Low Standby-Current Consumption of 10 μA Maximum - I²C to Parallel-Port Expander - Open-Drain Interrupt Output - Compatible With Most Microcontrollers - 400-kHz Fast I2C Bus - Address by Three Hardware Address Pins for Use of up to Eight Devices DB, DBQ, DGV, DW, OR PW PACKAGE (TOP VIEW) - Latched Outputs With High-Current Drive Capability for Directly Driving LEDs - Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II - ESD Protection Exceeds JESD 22 - 2000-V Human-Body Model (A114-A) - 200-V Machine Model (A115-A) - 1000-V Charged-Device Model (C101) #### **DESCRIPTION/ORDERING INFORMATION** This 16-bit I/O expander for the two-line bidirectional bus (I²C) is designed for 4.5-V to 5.5-V V_{CC} operation. #### **ORDERING INFORMATION** | T _A | PAC | CKAGE ⁽¹⁾⁽²⁾ | ORDERABLE PART NUMBER | TOP-SIDE MARKING | | |----------------|-------------|-------------------------|-----------------------|------------------|--| | | QSOP - DBQ | Reel of 2500 | PCF8575CDBQR | PCF8575C | | | | TVSOP - DGV | Reel of 2000 | PCF8575CDGVR | PF575C | | | | SOIC - DW | Tube of 25 | PCF8575CDW | DCE0575C | | | SOIC – DW | | Reel of 2000 | PCF8575CDWR | PCF8575C | | | -40°C to 85°C | SSOP – DB | Tube of 60 | PCF8575CDB | PF575C | | | -40 C to 65 C | 330F - DB | Reel of 2000 | PCF8575CDBR | PF3/3C | | | | | Tube of 60 | PCF8575CPW | | | | | TSSOP - PW | Reel of 1200 | PCF8575CPWR | PF575C | | | | | Reel of 250 | PCF8575CPWT | | | | | QFN – RGE | Reel of 3000 | PCF8575CRGER | PF575C | | ⁽¹⁾ Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. ⁽²⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com. TEXAS INSTRUMENTS www.ti.com SCPS123E-MARCH 2005-REVISED OCTOBER 2007 #### **DESCRIPTION/ORDERING INFORMATION (CONTINUED)** The PCF8575C provides general-purpose remote I/O expansion for most microcontroller families via the I²C interface serial clock (SCL) and serial data (SDA). The device features a 16-bit quasi-bidirectional input/output (I/O) port (P07–P00, P17–P10), including latched outputs with high-current drive capability for directly driving LEDs. Each quasi-bidirectional I/O can be used as an input or output without the use of a data-direction control signal. At power on, the I/Os are in 3-state mode. The strong pullup to V_{CC} allows fast-rising edges into heavily loaded outputs. This device turns on when an output is written high and is switched off by the negative edge of SCL. The I/Os should be high before being used as inputs. After power on, as all the I/Os are set to 3-state, all of them can be used as inputs. Any change in setting of the I/Os as either inputs or outputs can be done with the write mode. If a high is applied externally to an I/O that has been written earlier to low, a large current (I_{OL}) flows to GND. The PCF8575C provides an open-drain interrupt ($\overline{\text{INT}}$) output, which can be connected to the interrupt input of a microcontroller. An interrupt is generated by any rising or falling edge of the port inputs in the input mode. After time (t_{iv}), the signal $\overline{\text{INT}}$ is valid. Resetting and reactivating the interrupt circuit is achieved when data on the port is changed to the original setting, or data is read from or written to the port that generated the interrupt. Resetting occurs in the read mode at the acknowledge (ACK) bit after the rising edge of the SCL signal or in the write mode at the ACK bit after the falling edge of the SCL signal. Interrupts that occur during the ACK clock pulse can be lost (or be very short), due to the resetting of the interrupt during this pulse. Each change of the I/Os after resetting is detected and is transmitted as $\overline{\text{INT}}$. Reading from or writing to another device does not affect the interrupt circuit. By sending an interrupt signal on this line, the remote I/O can inform the microcontroller if there is incoming data on its ports, without having to communicate via the I²C bus. Thus, the PCF8575C can remain a simple slave device. Every data transmission to or from the PCF8575C must consist of an even number of bytes. The first data byte in every pair refers to port 0 (P07–P00), and the second data byte in every pair refers to port 1 (P17–P10). To write to the ports (output mode), the master first addresses the slave device, setting the last bit of the byte containing the slave address to logic 0. The PCF8575C acknowledges and the master sends the first data byte for P07–P00. After the first data byte is acknowledged by the PCF8575C, the second data byte (P17–P10) is sent by the master. Once again, the PCF8575C acknowledges the receipt of the data, after which this 16-bit data is presented on the port lines. The number of data bytes that can be sent successively is not limited. After every two bytes, the previous data is overwritten. When the PCF8575C receives the pairs of data bytes, the first byte is referred to as P07–P00 and the second byte as P17–P10. The third byte is referred to as P07–P00, the fourth byte as P17–P10, and so on. Before reading from the PCF8575C, all ports desired as input should be set to logic 1. To read from the ports (input mode), the master first addresses the slave device, setting the last bit of the byte containing the slave address to logic 1. The data bytes that follow on the SDA are the values on the ports. If the data on the input port changes faster than the master can read, this data may be lost. When power is applied to V_{CC} , an internal power-on reset holds the PCF8575C in a reset state until V_{CC} has reached V_{POR} . At that time, the reset condition is released, and the device I^2C -bus state machine initializes the bus to its default state. The hardware pins (A0, A1, and A2) are used to program and vary the fixed I^2C address, and allow up to eight devices to share the same I^2C bus or SMBus. The fixed I^2C address of the PCF8575C is the same as the PCF8575, PCF8574, PCA9535, and PCA9555, allowing up to eight of these devices, in any combination, to share the same I^2C bus or SMBus. Submit Documentation Feedback SCPS123E-MARCH 2005-REVISED OCTOBER 2007 #### **TERMINAL FUNCTIONS** | NO. | | | | |-----------------------------|-----|-----------------|---| | DB, DBQ, DGV,
DW, AND PW | RGE | NAME | FUNCTION | | 1 | 22 | ĪNT | Interrupt output. Connect to V _{CC} through a pullup resistor. | | 2 | 23 | A1 | Address input 1. Connect directly to V _{CC} or ground. Pullup resistors are not needed. | | 3 | 24 | A2 | Address input 2. Connect directly to V _{CC} or ground. Pullup resistors are not needed. | | 4 | 1 | P00 | P-port input/output. Open-drain design structure. Connect to V _{CC} through a pullup resistor. | | 5 | 2 | P01 | P-port input/output. Open-drain design structure. Connect to V _{CC} through a pullup resistor. | | 6 | 3 | P02 | P-port input/output. Open-drain design structure. Connect to V _{CC} through a pullup resistor. | | 7 | 4 | P03 | P-port input/output. Open-drain design structure. Connect to V _{CC} through a pullup resistor. | | 8 | 5 | P04 | P-port input/output. Open-drain design structure. Connect to V _{CC} through a pullup resistor. | | 9 | 6 | P05 | P-port input/output. Open-drain design structure. Connect to V _{CC} through a pullup resistor. | | 10 | 7 | P06 | P-port input/output. Open-drain design structure. Connect to V _{CC} through a pullup resistor. | | 11 | 8 | P07 | P-port input/output. Open-drain design structure. Connect to V _{CC} through a pullup resistor. | | 12 | 9 | GND | Ground | | 13 | 10 | P10 | P-port input/output. Open-drain design structure. Connect to V _{CC} through a pullup resistor. | | 14 | 11 | P11 | P-port input/output. Open-drain design structure. Connect to V _{CC} through a pullup resistor. | | 15 | 12 | P12 | P-port input/output. Open-drain design structure. Connect to V _{CC} through a pullup resistor. | | 16 | 13 | P13 | P-port input/output. Open-drain design structure. Connect to V _{CC} through a pullup resistor. | | 17 | 14 | P14 | P-port input/output. Open-drain design structure. Connect to V _{CC} through a pullup resistor. | | 18 | 15 | P15 | P-port input/output. Open-drain design structure. Connect to V _{CC} through a pullup resistor. | | 19 | 16 | P16 | P-port input/output. Open-drain design structure. Connect to V _{CC} through a pullup resistor. | | 20 | 17 | P17 | P-port input/output. Open-drain design structure. Connect to V _{CC} through a pullup resistor. | | 21 | 18 | A0 | Address input 0. Connect directly to V _{CC} or ground. Pullup resistors are not needed. | | 22 | 19 | SCL | Serial clock line. Connect to V _{CC} through a pullup resistor | | 23 | 20 | SDA | Serial data line. Connect to V _{CC} through a pullup resistor. | | 24 | 21 | V _{CC} | Supply voltage | #### LOGIC DIAGRAM (POSITIVE LOGIC)(A) A. Pin numbers shown are for the DB, DBQ, DGV, DW, and PW packages. #### SIMPLIFIED SCHEMATIC DIAGRAM OF EACH P-PORT INPUT/OUTPUT SCPS123E-MARCH 2005-REVISED OCTOBER 2007 #### I²C Interface The bidirectional I²C bus consists of the serial clock (SCL) and serial data (SDA) lines. Both lines must be connected to a positive supply via a pullup resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy. I^2C communication with this device is initiated by a master sending a start condition, a high-to-low transition on the SDA input/output while the SCL input is high (see Figure 1). After the start condition, the device address byte is sent, MSB first, including the data direction bit (R/\overline{W}). This device does not respond to the general call address. After receiving the valid address byte, this device responds with an ACK, a low on the SDA input/output during the high of the ACK-related clock pulse. The address inputs (A2–A0) of the slave device must not be changed between the start and the stop conditions. The data byte follows the address ACK. If the R/\overline{W} bit is high, the data from this device are the values read from the P port. If the R/\overline{W} bit is low, the data are from the master, to be output to the P port. The data byte is followed by an ACK sent from this device. If other data bytes are sent from the master, following the ACK, they are ignored by this device. Data are output only if complete bytes are received and acknowledged. The output data is valid at time (t_{nv}) after the low-to-high transition of SCL, during the clock cycle for the ACK. On the I²C bus, only one data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the high pulse of the clock period, as changes in the data line at this time are interpreted as control commands (start or stop) (see Figure 2). A stop condition, a low-to-high transition on the SDA input/output while the SCL input is high, is sent by the master (see Figure 1). The number of data bytes transferred between the start and the stop conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one ACK bit. The transmitter must release the SDA line before the receiver can send an ACK bit. A slave receiver that is addressed must generate an ACK after the reception of each byte. Also, a master must generate an ACK after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the ACK clock pulse so that the SDA line is stable low during the high pulse of the ACK-related clock period (see Figure 3). Setup and hold times must be taken into account. A master receiver must signal an end of data to the transmitter by not generating an acknowledge (NACK) after the last byte that has been clocked out of the slave. This is done by the master receiver by holding the SDA line high. In this event, the transmitter must release the data line to enable the master to generate a stop condition. Figure 1. Definition of Start and Stop Conditions Figure 2. Bit Transfer Figure 3. Acknowledgment on I²C Bus #### **Interface Definition** | BYTE | | | | | BIT | | | | |--------------------------------|---------|-----|-----|-----|-----|-----|-----|---------| | BIIE | 7 (MSB) | 6 | 5 | 4 | 3 | 2 | 1 | 0 (LSB) | | I ² C slave address | L | Н | L | L | A2 | A1 | A0 | R/W | | P0x I/O data bus | P07 | P06 | P05 | P04 | P03 | P02 | P01 | P00 | | P1x I/O data bus | P17 | P16 | P15 | P14 | P13 | P12 | P11 | P10 | Figure 4 and Figure 5 show the address and timing diagrams for the write and read modes, respectively. #### **Integral Multiples of Two Bytes** Figure 4. Write Mode (Output) A low-to-high transition of SDA while SCL is high is defined as the stop condition (P). The transfer of data can be stopped at any moment by a stop condition. When this occurs, data present at the latest ACK phase is valid (output mode). Input data is lost. Figure 5. Read Mode (Input) SCPS123E-MARCH 2005-REVISED OCTOBER 2007 #### **Address Reference** | | INPUTS | | I ² C BUS SLAVE ADDRESS | |----|------------|----|------------------------------------| | A2 | A 1 | A0 | I-C BUS SLAVE ADDRESS | | L | L | L | 32 (decimal), 20 (hexadecimal) | | L | L | Н | 33 (decimal), 21 (hexadecimal) | | L | Н | L | 34 (decimal), 22 (hexadecimal) | | L | Н | Н | 35 (decimal), 23 (hexadecimal) | | Н | L | L | 36 (decimal), 24 (hexadecimal) | | Н | L | Н | 37 (decimal), 25 (hexadecimal) | | Н | Н | L | 38 (decimal), 26 (hexadecimal) | | Н | Н | Н | 39 (decimal), 27 (hexadecimal) | ## Absolute Maximum Ratings(1) over operating free-air temperature range (unless otherwise noted) | | | | MIN | MAX | UNIT | |------------------|---|-----------------------------|------|-----------------------|------| | V _{CC} | Supply voltage range | | -0.5 | 6.5 | V | | VI | Input voltage range ⁽²⁾ | | -0.5 | V _{CC} + 0.5 | V | | Vo | Output voltage range (2) | | -0.5 | V _{CC} + 0.5 | V | | I _{IK} | Input clamp current | V _I < 0 | | -20 | mA | | I _{OK} | Output clamp current | V _O < 0 | | -20 | mA | | I _{OK} | Input/output clamp current | $V_O < 0$ or $V_O > V_{CC}$ | | ±400 | μΑ | | I _{OL} | Continuous output low current | $V_O = 0$ to V_{CC} | | 50 | mA | | I _{OH} | Continuous output high current | $V_O = 0$ to V_{CC} | | -4 | mA | | | Continuous current through V _{CC} or GND | | | ±100 | mA | | | | DB package | | 63 | | | | | DBQ package | | 61 | | | 0 | Dealer of the grand in the day of (3) | DGV package | | 86 | 0000 | | θ_{JA} | Package thermal impedance (3) | DW package | | 46 | °C/W | | | | PW package | | 88 | | | | | RGE package | | 53 | | | T _{stg} | Storage temperature range | | -65 | 150 | °C | ⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. #### **Recommended Operating Conditions** | | | | MIN | MAX | UNIT | |------------------|---------------------------------|--------------------------|---------------------|-----------------------|------| | V_{CC} | Supply voltage | | 4.5 | 5.5 | V | | V | High level input voltage | A0, A1, A2, SDA, and SCL | $0.7 \times V_{CC}$ | V _{CC} + 0.5 | V | | V _{IH} | High-level input voltage | P07-P00 and P17-P10 | $0.8 \times V_{CC}$ | V _{CC} + 0.5 | V | | ., | Laurania and calle an | A0, A1, A2, SDA, and SCL | -0.5 | $0.3 \times V_{CC}$ | | | V _{IL} | Low-level input voltage | P07-P00 and P17-P10 | -0.5 | $0.6 \times V_{CC}$ | V | | I _{OHT} | P-port transient pullup current | | | -10 | mA | | I _{OL} | P-port low-level output current | | | 25 | mA | | T _A | Operating free-air temperature | | -40 | 85 | °C | Submit Documentation Feedback ⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. ⁽³⁾ The package thermal impedance is calculated in accordance with JESD 51-7. SCPS123E-MARCH 2005-REVISED OCTOBER 2007 #### **Electrical Characteristics** over recommended operating free-air temperature range (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | V _{CC} | MIN | TYP ⁽¹⁾ | MAX | UNIT | |------------------|---------------------------------|---|-------------------|------|--------------------|------|------| | V _{IK} | Input diode clamp voltage | I _I = -18 mA | 4.5 V to
5.5 V | -1.2 | | | V | | V_{POR} | Power-on reset voltage (2) | $V_I = V_{CC}$ or GND, $I_O = 0$ | V _{POR} | | 1.2 | 1.8 | V | | I _{OHT} | P-port transient pullup current | High during ACK V _{OH} = GND | 4.5 V | -0.5 | -1 | | mA | | | SDA | V _{OL} = 0.4 V | 4.5 V to
5.5 V | 3 | | | | | | Doort | V _{OL} = 0.4 V | 4.5 V to | 5 | 15 | | mA | | l _{OL} | P port | V _{OL} = 1 V | 5.5 V | 10 | 25 | | MA | | | INT | V _{OL} = 0.4 V | 4.5 V to
5.5 V | 1.6 | | | | | | SCL, SDA | V V STOND | 4.5 V to | | | ±2 | | | Iı | A0, A1, A2 | $V_I = V_{CC}$ or GND | 5.5 V | | | ±1 | μA | | I _{IHL} | P port | $V_1 \ge V_{CC}$ or $V_1 \le GND$ | 4.5 V to
5.5 V | | | ±400 | μΑ | | | Operating mode | $V_I = V_{CC}$ or GND, $I_O = 0$, $f_{SCL} = 400$ kHz | 5.5.7 | | 100 | 200 | | | I _{CC} | Standby mode | $V_I = V_{CC}$ or GND, $I_O = 0$, $f_{SCL} = 0$ kHz | 5.5 V | | 2.5 | 10 | μΑ | | ΔI _{CC} | Supply current increase | One input at V _{CC} - 0.6 V,
Other inputs at V _{CC} or GND | 4.5 V to
5.5 V | | | 200 | μΑ | | C _i | SCL | V _I = V _{CC} or GND | 4.5 V to
5.5 V | | 3 | 7 | pF | | C _{io} | SDA | V – V or GND | 4.5 V to | | 3 | 7 | pF | | o _{io} | P port | $V_{IO} = V_{CC}$ or GND | 5.5 V | | 4 | 10 | þΓ | ## I²C Interface Timing Requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 6) | | | | MIN | MAX | UNIT | |------------------|--|-----------------------------|---------------------------------------|-----|------| | f _{scl} | I ² C clock frequency | | | 400 | kHz | | t _{sch} | I ² C clock high time | | 0.6 | | μs | | t _{scl} | I ² C clock low time | | 1.3 | | μs | | t _{sp} | I ² C spike time | | | 50 | ns | | t _{sds} | I ² C serial-data setup time | | 100 | | ns | | t _{sdh} | I ² C serial-data hold time | | 0 | | ns | | t _{icr} | I ² C input rise time | | 20 + 0.1C _b ⁽¹⁾ | 300 | ns | | t _{icf} | I ² C input fall time | | 20 + 0.1C _b ⁽¹⁾ | 300 | ns | | t _{ocf} | I ² C output fall time (10-pF to 400-pF bus) | | | 300 | ns | | t _{buf} | I ² C bus free time between stop and start | | 1.3 | | μs | | t _{sts} | I ² C start or repeated start condition setup | | 0.6 | | μs | | t _{sth} | I ² C start or repeated start condition hold | | 0.6 | | μs | | t _{sps} | I ² C stop condition setup | | 0.6 | | μs | | t _{vd} | Valid-data time | SCL low to SDA output valid | | 1.2 | μs | | C _b | I ² C bus capacitive load | | | 400 | pF | ⁽¹⁾ $C_b = total bus capacitance of one bus line in pF$ All typical values are at V_{CC} = 5 V, T_A = 25°C. The power-on reset circuit resets the I²C bus logic with V_{CC} < V_{POR} and sets all I/Os to logic high (with current source to V_{CC}). TEXAS INSTRUMENTS www.ti.com SCPS123E-MARCH 2005-REVISED OCTOBER 2007 #### **Switching Characteristics** over recommended operating free-air temperature range, $C_L \le 100 \text{ pF}$ (unless otherwise noted) (see Figure 7 and Figure 8) | | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | MIN MAX | UNIT | |-----------------|----------------------------|-----------------|----------------|---------|------| | t _{iv} | Interrupt valid time | P port | ĪNT | 4 | μs | | t _{ir} | Interrupt reset delay time | SCL | ĪNT | 4 | μs | | t _{pv} | Output data valid | SCL | P port | 4 | μs | | t _{su} | Input data setup time | P port | SCL | 0 | μs | | t _h | Input data hold time | P port | SCL | 4 | μs | Submit Documentation Feedback #### TYPICAL OPERATING CHARACTERISTICS $T_A = 25^{\circ}C$ (unless otherwise noted) #### PARAMETER MEASUREMENT INFORMATION **SDA LOAD CONFIGURATION** **VOLTAGE WAVEFORMS** | BYTE | DESCRIPTION | |------|--------------------------| | 1 | I ² C address | | 2, 3 | P-port data | Figure 6. I²C Interface Load Circuit and Voltage Waveforms #### **PARAMETER MEASUREMENT INFORMATION (continued)** #### INTERRUPT LOAD CONFIGURATION Figure 7. Interrupt Load Circuit and Voltage Waveforms #### PARAMETER MEASUREMENT INFORMATION (continued) Figure 8. P-Port Load Circuits and Voltage Waveforms 16-Aug-2012 #### **PACKAGING INFORMATION** | Orderable Device | Status (1) | Package Type | Package
Drawing | Pins | Package Qty | Eco Plan ⁽²⁾ | Lead/
Ball Finish | MSL Peak Temp ⁽³⁾ | Samples
(Requires Login) | |------------------|------------|--------------|--------------------|------|-------------|----------------------------|----------------------|------------------------------|-----------------------------| | PCF8575CDB | ACTIVE | SSOP | DB | 24 | 60 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | PCF8575CDBE4 | ACTIVE | SSOP | DB | 24 | 60 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | PCF8575CDBG4 | ACTIVE | SSOP | DB | 24 | 60 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | PCF8575CDBQR | ACTIVE | SSOP | DBQ | 24 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | PCF8575CDBQRE4 | ACTIVE | SSOP | DBQ | 24 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | PCF8575CDBQRG4 | ACTIVE | SSOP | DBQ | 24 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | PCF8575CDBR | ACTIVE | SSOP | DB | 24 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | PCF8575CDBRE4 | ACTIVE | SSOP | DB | 24 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | PCF8575CDBRG4 | ACTIVE | SSOP | DB | 24 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | PCF8575CDGVR | ACTIVE | TVSOP | DGV | 24 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | PCF8575CDGVRE4 | ACTIVE | TVSOP | DGV | 24 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | PCF8575CDGVRG4 | ACTIVE | TVSOP | DGV | 24 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | PCF8575CDW | ACTIVE | SOIC | DW | 24 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | PCF8575CDWE4 | ACTIVE | SOIC | DW | 24 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | PCF8575CDWG4 | ACTIVE | SOIC | DW | 24 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | PCF8575CDWR | ACTIVE | SOIC | DW | 24 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | PCF8575CDWRE4 | ACTIVE | SOIC | DW | 24 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | 16-Aug-2012 | Orderable Device | Status ⁽¹⁾ | Package Type | Package
Drawing | Pins | Package Qty | Eco Plan ⁽²⁾ | Lead/
Ball Finish | MSL Peak Temp ⁽³⁾ | Samples
(Requires Login) | |------------------|-----------------------|--------------|--------------------|------|-------------|----------------------------|----------------------|------------------------------|-----------------------------| | PCF8575CDWRG4 | ACTIVE | SOIC | DW | 24 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | PCF8575CPW | ACTIVE | TSSOP | PW | 24 | 60 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | PCF8575CPWE4 | ACTIVE | TSSOP | PW | 24 | 60 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | PCF8575CPWG4 | ACTIVE | TSSOP | PW | 24 | 60 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | PCF8575CPWR | ACTIVE | TSSOP | PW | 24 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | PCF8575CPWRE4 | ACTIVE | TSSOP | PW | 24 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | PCF8575CPWRG4 | ACTIVE | TSSOP | PW | 24 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | PCF8575CRGER | ACTIVE | VQFN | RGE | 24 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | PCF8575CRGERG4 | ACTIVE | VQFN | RGE | 24 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined. **Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. # **PACKAGE OPTION ADDENDUM** 16-Aug-2012 **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. # PACKAGE MATERIALS INFORMATION 16-Aug-2012 www.ti.com #### TAPE AND REEL INFORMATION #### **REEL DIMENSIONS** #### **TAPE DIMENSIONS** | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### TAPE AND REEL INFORMATION #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |--------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | PCF8575CDBQR | SSOP | DBQ | 24 | 2500 | 330.0 | 16.4 | 6.5 | 9.0 | 2.1 | 8.0 | 16.0 | Q1 | | PCF8575CDBR | SSOP | DB | 24 | 2000 | 330.0 | 16.4 | 8.2 | 8.8 | 2.5 | 12.0 | 16.0 | Q1 | | PCF8575CDGVR | TVSOP | DGV | 24 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | | PCF8575CDWR | SOIC | DW | 24 | 2000 | 330.0 | 24.4 | 10.75 | 15.7 | 2.7 | 12.0 | 24.0 | Q1 | | PCF8575CPWR | TSSOP | PW | 24 | 2000 | 330.0 | 16.4 | 6.95 | 8.3 | 1.6 | 8.0 | 16.0 | Q1 | | PCF8575CRGER | VQFN | RGE | 24 | 3000 | 330.0 | 12.4 | 4.25 | 4.25 | 1.15 | 8.0 | 12.0 | Q2 | www.ti.com 16-Aug-2012 *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |--------------|--------------|-----------------|------|------|-------------|------------|-------------| | PCF8575CDBQR | SSOP | DBQ | 24 | 2500 | 367.0 | 367.0 | 38.0 | | PCF8575CDBR | SSOP | DB | 24 | 2000 | 367.0 | 367.0 | 38.0 | | PCF8575CDGVR | TVSOP | DGV | 24 | 2000 | 367.0 | 367.0 | 35.0 | | PCF8575CDWR | SOIC | DW | 24 | 2000 | 367.0 | 367.0 | 45.0 | | PCF8575CPWR | TSSOP | PW | 24 | 2000 | 367.0 | 367.0 | 38.0 | | PCF8575CRGER | VQFN | RGE | 24 | 3000 | 367.0 | 367.0 | 35.0 | DW (R-PDSO-G24) # PLASTIC SMALL OUTLINE NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). - D. Falls within JEDEC MS-013 variation AD. DBQ (R-PDSO-G24) #### PLASTIC SMALL-OUTLINE PACKAGE - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15) per side. - D. Falls within JEDEC MO-137 variation AE. DBQ (R-PDSO-G24) # PLASTIC SMALL OUTLINE PACKAGE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad. - D. Publication IPC-7351 is recommended for alternate designs. - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations. PW (R-PDSO-G24) ## PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side. - E. Falls within JEDEC MO-153 # PW (R-PDSO-G24) # PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate design. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - B. This drawing is subject to change without notice. - C. Quad Flatpack, No-Leads (QFN) package configuration. - D. The package thermal pad must be soldered to the board for thermal and mechanical performance. - E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions. - F. Falls within JEDEC MO-220. # RGE (S-PVQFN-N24) #### PLASTIC QUAD FLATPACK NO-LEAD #### THERMAL INFORMATION This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC). For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com. The exposed thermal pad dimensions for this package are shown in the following illustration. Exposed Thermal Pad Dimensions 4206344-6/AA 04/12 NOTES: A. All linear dimensions are in millimeters # RGE (S-PVQFN-N24) # PLASTIC QUAD FLATPACK NO-LEAD - S: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com www.ti.com. - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations. - F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad. #### DB (R-PDSO-G**) #### PLASTIC SMALL-OUTLINE #### **28 PINS SHOWN** NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-150 #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements. | Applications | |--------------| **Products** Audio www.ti.com/audio **Amplifiers** amplifier.ti.com **Data Converters** dataconverter.ti.com **DLP® Products** www.dlp.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com **OMAP Mobile Processors** www.ti.com/omap Wireless Connectivity www.ti.com/wirelessconnectivity Automotive and Transportation www.ti.com/automotive www.ti.com/communications Communications and Telecom Computers and Peripherals www.ti.com/computers Consumer Electronics www.ti.com/consumer-apps **Energy and Lighting** www.ti.com/energy Industrial www.ti.com/industrial Medical www.ti.com/medical Security www.ti.com/security Space, Avionics and Defense www.ti.com/space-avionics-defense Video and Imaging www.ti.com/video e2e.ti.com **TI E2E Community**