
KLP / KLPA Module Walkthrough
Spark Fun Electronics - Jeff Gray

Introduction

These laipac modules provide a simple, straight-forward transmitter/receiver pairs for
all of your low-cost wireless project needs. These integrated circuits range in data-
rates and electronic characteristics as outlined below.

Laipac
Model

Spark Fun
SKU

Frequency
Range

Data
Rate

Operating Voltage
(Transmitter)

Operating Voltage
(Receiver)

TLP/RLP 434 RF-KLP 315, 418, and 434 MHz 2,400 bps 2 - 12V 4.5 – 5.5 V

TLP/RLP 434-A RF-KLPA 315, 418, and 434 MHz 4,800 bps 2 - 12V 3.3 – 6V

TLP/RLP 916-A RF-KLP916-ASK 915 MHz 200,000 bps 2 - 12V 2.7 – 5 V

TLP/RLP 916-F RF-KLP916-FSK 915 MHz 40,000 bps 2 - 12V 2.7 – 5.5V

Pin Diagrams and Wiring Information

Along with this information, here are the pin diagrams for the transmitter and receiver
units. All four models of receivers use the same pin configuration, but the TLP 916-F
transmitter is an odd man out, having extra pins to accommodate for its slightly larger
board size.

These devices are simple pass-through integrated circuits. Meaning, you set up your
baud-rate (as long as its within an acceptable range of whatever pair of devices you
are using), and then start sending bytes to the transmitter. Quite simply, it just sends
your data out the transmitter and the receiver grabs it, acting as if you had a wired
serial connection between them, minus the wire!

Based on these specifications, here's some sample images and code to get you
started, followed by some things to consider while using these devices.

Three of the four transmitter
modules have four pins, while the
other has six. The six-legged version
simply has redundant pins of power
and ground, but otherwise remains
the same.

Starting from the top, Pin 1 goes to
ground. Pin 2 is the data input from
the microcontroller of your choice.
It transmits one byte at a time, at
the given baud rate of the unit
you're using. Pin 3 is the supply
voltage, which will commonly be 5
volts. We'll explore other options
later. Finally, Pin 4 is the optional
antenna we'll look at later.

The receiver modules all share
common pin assignments, as follows
(from the top). Pin 1 goes to
ground. Pin 2 sends the incoming
byte from the transmitter out to the
microcontroller. Pin 3 needs no
connection, but can be taken to
ground. Pins 4 and 5 go to the
receiver voltage. Pins 6 and 7 go to
ground, leaving Pin 8 as the
optional antenna pin. Quite simply,
that's all there is to it!

Sample Code

On the following page, I've provided two different sets of transmitter and receiver
code for the microcontrollers you may be using in your project. One set is provided in
Pic Basic Pro for the PIC microcontroller users, while the other is provided using the
Arduino environment for AVR microcontrollers.

Pic Basic Pro Arduino 0004
'***
'* Simple Transmitter (2400 baud)
'* For PIC18F452
'***

DEFINE OSC 20
counter var byte
counter = 0
OUTPUT PORTC.6

main:

 ' 16780 is 2400 non-inverted
 ' send out to transmitter
 SEROUT2 PORTC.6,16780, [counter]

 counter = counter + 1
 PAUSE 10

goto main

/*
 * Simple Transmitter Code
 * This code simply counts up to 255
 * over and over
 * (TX out of Arduino is Digital Pin 1)
 */

byte counter;

void setup(){
 //2400 baud for the 434 model
 Serial.begin(2400);
 counter = 0;
}
void loop(){
 //send out to transmitter
 Serial.print(counter);
 counter++;
 delay(10);
}

'***
'* Simple Receiver (2400 baud)
'* For PIC18F452
'***

DEFINE OSC 20
inbyte var byte
OUTPUT PORTC.6
INPUT PORTD.1

main:

 ' 16780 is 2400 non-inverted
 ' Receive on Pin Port D1
 SERIN2 PORTD.1,16780, [inbyte]

 ' debug to computer serial, just to see it
 SEROUT2 PORTC.6, 16468, [inbyte]

 ' clear out inbyte. You see repeating zeros
 ' if you are losing signal
 inbyte = 0

 goto main

/*
 * Simple Receiver Code
 * (TX out of Arduino is Digital Pin 1)
 * (RX into Arduino is Digital Pin 0)
 */

int incomingByte = 0;

void setup(){
 //2400 baud for the 434 model
 Serial.begin(2400);
}
void loop(){
 // read in values, debug to computer
 if (Serial.available() > 0) {
 incomingByte = Serial.read();
 Serial.println(incomingByte, DEC);
 }

incomingByte = 0;

}

Tips and Considerations

• Signal Strength (Transmitter Voltage and Antennas)
While the above establishes a wireless connection between two separate
circuits, there are two considerations which will expand the range and
efficiency of these two devices. First of all, each transmitter device has an
supply voltage range of 2 – 12 volts. The higher the voltage, the stronger the
signal strength. Commonly, your microcontroller and other circuitry may be
running at 5 volts, so you may need to route a separate line of power, either
from a non-voltage resisted incoming voltage, or a separate power supply
sharing a common ground. Since these devices take very little amperage,
consider using a 12 volt power supply, and running voltage directly from it to
the transmitter, while isolating the other circuitry's voltage through a voltage
regulator.

Also, the use of an optional antenna will increase the effectiveness of your
wireless communication. A simple wire will do the trick, but Spark Fun
Electronics also sells antennas specifically designed for this as well. Experiment
with different antenna shapes and configurations based on the shape and
make of your project for best results.

• Different Supply Voltages for Receivers
As the chart at the beginning of this document shows, each receiver has
different ranges for acceptable voltage. This is handy for use with 3.3 volt
microcontrollers and low power ICs. Keep in mind that the RLP 434 only has a
range of 4.5 – 5.5 volts, making it the exception in this case.

• Counters for Debugging
I found, when experiencing weird results with the pair, to implement a counter
in my transmitter code as shown in the above examples. The benefit of this, is it
gives you a pattern you can follow visually, whereas an analog input or a
combination of bits may be harder to troubleshoot. Especially when tuning the
lower quality devices with a small screwdriver, its nice to be able to see a
pattern of numbers scroll past in the serial window. Once you have successfully
tuned the units and examined the data flow and protocol you want to send
from device to device, remove the debugging serial-to-computer commands
and you're ready to build up the code from there. (note: In most occasions, I
don't recommend tuning the devices, as they are generally tuned when shipped, but
you may need to do so for one reason or another).

Best of luck in your wireless project!

