
Adafruit NeoPixel Überguide
Created by Phillip Burgess

Last updated on 2014-01-01 11:45:23 AM EST

2
3
3
4
5
9
9

10
13
14
15
16
17
17
19
19
22
23
23
23
25
26
27

Guide Contents

Guide Contents
The Magic of NeoPixels

Important Things to Know About NeoPixels in General
Adafruit NeoPixels are Available in the Following Products:
Important Things to Know About NeoPixel Strips

Arduino Library
Basic Connections
A Simple Code Example: strandtest
Pixels Gobble RAM
Powering NeoPixels
Estimating Power Requirements
Giant Power Supplies
Distributing Power
Driving 5V NeoPixels from 3.3V Microcontrollers
NeoMatrix Library
Layouts
Tiled Matrices
Other Layouts
RAM Again
Gamma Correction
Advanced Coding
Third-Party Libraries
Writing Your Own Library

© Adafruit Industries http://learn.adafruit.com/adafruit-neopixel-uberguide Page 2 of 28

The Magic of NeoPixels

Incorporating scads of LEDs into an electronic project used to be a hairy prospect, a veritable
rat’s nest of wires and code. The arrival of dedicated LED driver chips brought welcome relief,
offloading grunt work from the microcontroller and allowing one to focus on the application.
Much simpler, but still not “Christmas light” simple.

The WS2812 Integrated Light Source — or NeoPixel in Adafruit parlance — is the latest
advance in the quest for a simple, scalable and affordable full-color LED. Red, green and blue
LEDs are integrated alongside a driver chip into a tiny surface-mount package controlled
through a single wire. They can be used individually, chained into longer strings or assembled
into still more interesting form-factors.

“Any sufficiently advanced technology is indistinguishable from magic.” — Clarke’s Third
Law

Important Things to Know About NeoPixels in General

Not all addressable LEDs are NeoPixels. “NeoPixel” is Adafruit’s brand for individually-
addressable RGB color pixels and strips based on the WS2812 and WS2811 LED/drivers,
using a single-wire control protocol. Other LED products we carry — WS2801 pixels,
LPD8806 and “analog” strips — use different methodologies (and have their own tutorials).
When seeking technical support in the forums, a solution can be found more quickly if
the correct LED type is mentioned.
NeoPixels don’t just light up on their own; they require a microcontroller (such as Arduino)
and some programming. We provide some sample code to get you started. To create your
own effects and animation, you’ll need some programming practice. If this is a new
experience, work through some of the beginning Arduino tutorials to get a feel for the
language.
NeoPixels aren’t the answer for every project. The control signal has very strict timing
requirements, and some development boards (such as Netduino or Raspberry Pi) can’t
reliably achieve this. This is why we continue to offer other LED types; some are more
adaptable to certain situations.

Can I use NeoPixels for POV (persistence of vision) displays?
Not recommended. The refresh rate is relatively low (about 400 Hz), and color displays in

fast motion may appear “speckled.” They look fine when stationary though. For POV use,
LPD8806 strips (http://adafru.it/306) will look much better (they have about a 4 KHz refresh
rate).

Not recommended. The refresh rate is relatively low (about 400 Hz), and color displays in

© Adafruit Industries http://learn.adafruit.com/adafruit-neopixel-uberguide Page 3 of 28

http://www.adafruit.com/products/306

fast motion may appear “speckled.” They look fine when stationary though. For POV use, <a
href="http://www.adafruit.com/products/306" title="Link:
http://www.adafruit.com/products/306">LPD8806 strips<span class="pdf-short-
link"> (http://adafru.it/306) will look much better (they have about a 4 KHz refresh
rate).

How about for light painting?
Definitely! The slower movement used for photographic light painting doesn’t accentuate the

limited refresh rate; the results look great, especially with a light diffuser.
Definitely! The slower movement used for photographic light painting doesn’t accentuate
the limited refresh rate; the results look great, especially with a light diffuser.

Adafruit NeoPixels are Available in the Following Products:

NeoPixel Digital RGB LED
Weatherproof Strip: 30 LEDs per
meter on a white backing strip.

http://www.adafruit.com/products/1376 (http://adafru.it/1376)

Sold by the meter, up to 5 meters per
reel. Can be cut to shorter lengths (down
to a single pixel).

At peak brightness (all LEDs on, full
brightness white), each 1-meter length
draws about 9.5 Watts (or just under 2
Amps at 5 Volts). Mixed colors and lower
brightness settings will use proportionally
less power.

NeoPixel Digital RGB LED
Weatherproof Strip: 30 LEDs per
meter on a black backing strip.

http://www.adafruit.com/products/1460 (http://adafru.it/1460)

Sold by the meter, up to 5 meters per
reel. Can be cut to shorter lengths (down
to a single pixel).

Power requirements are the same as the
white-backed strip above.

NeoPixel Digital RGB LED
Weatherproof Strip: 60 LEDs per
meter on a white backing strip.

http://www.adafruit.com/products/1138 (http://adafru.it/1138)

Double the pixel density! Sold by the
meter, up to 4 meters per reel. Can be
cut to shorter lengths (down to a single
pixel).

At peak brightness (all LEDs on, full
brightness white), each 1-meter length
draws about 18 Watts (or about 3.6
Amps at 5 Volts). Mixed colors and lower
brightness settings will use proportionally
less power.

© Adafruit Industries http://learn.adafruit.com/adafruit-neopixel-uberguide Page 4 of 28

http://learn.adafruit.com/assets/10502
http://www.adafruit.com/products/1376
http://learn.adafruit.com/assets/10501
http://www.adafruit.com/products/1460
http://learn.adafruit.com/assets/10504
http://www.adafruit.com/products/1138

NeoPixel Digital RGB LED
Weatherproof Strip: 60 LEDs per
meter on a black backing strip.

http://www.adafruit.com/products/1461 (http://adafru.it/1461)

Sold by the meter, up to 4 meters per
reel. Can be cut to shorter lengths (down
to a single pixel).

Power requirements are the same as the
white-backed strip above.

NeoPixel Digital RGB LED Strip:
144 LEDs per meter on a white backing
strip.

http://www.adafruit.com/products/1507 (http://adafru.it/1507)

Sold in 1-meter lengths only, with 3-pin
JST connectors on both ends. Multiple
meters are not joined on a single reel.
Can be cut to shorter lengths (down to a
single pixel). Originally this strip did not
have a weatherproof covering, but the
latest batches now include it.

At peak brightness (all LEDs on, full
brightness white), the full 1-meter length
draws about 35 watts (7 Amps at 5
Volts). Mixed colors and lower brightness
settings will use proportionally less
power.

NeoPixel Digital RGB LED Strip:
144 LEDs per meter on a black backing
strip.

http://www.adafruit.com/products/1506 (http://adafru.it/1506)

Sold in 1-meter lengths only, with 3-pin
JST connectors on both ends. Multiple
meters are not joined on a single reel.
Can be cut to shorter lengths (down to a
single pixel). Originally this strip did not
have a weatherproof covering, but the
latest batches now include it.

Power requirements are the same as the
white-backed strip above.

The product list continues below. But first…

Important Things to Know About NeoPixel Strips

NeoPixel strips are sold in one meter lengths. The 144 pixels/meter strips are always
separate 1-meter lengths. For 60 and 30 pixels/meter strips, orders for multiple meters will
be a single contiguous strip, up to a limit: 4 meters for 60 pixels/meter strip, or 5 meters for
30 pixels/meter strip.
For 60 and 30 pixels/meter strips, if purchasing less than a full reel (4 or 5 meters,
respectively), the strip may or may not have a 3-pin JST plug soldered to one end. These
plugs are for factory testing and might be at either end — the plug does not always indicate

© Adafruit Industries http://learn.adafruit.com/adafruit-neopixel-uberguide Page 5 of 28

http://learn.adafruit.com/assets/10503
http://www.adafruit.com/products/1461
http://learn.adafruit.com/assets/10697
http://www.adafruit.com/products/1507
http://learn.adafruit.com/assets/10698
http://www.adafruit.com/products/1506

the input end! Arrows printed on the strip show the actual data direction.
Although these strips are flexible, they do not tolerate continuous and repeated bending. A
typical application is architectural installations, where they can be curved around columns
and then stay put. Repeated flexing (as on costumes) will soon crack the solder
connections. For wearable use, either affix shorter segments to a semi-rigid base (e.g. a
hat, BMX armor, etc.), or use the individual sewable NeoPixels shown later.
The flex strips are enclosed in a weatherproof silicone sleeve, making them immune to rain
and splashes, but are not recommended for continuous submersion. Early 144 pixel/meter
strips were not weatherproof, but the latest batches now include this feature.
The silicone sleeve can be cut and removed for a slimmer profile, but the strip is no longer
weatherproof.
Very few glues will adhere to the weatherproof silicone sleeve. Using zip ties for a
“mechanical” bond is usually faster and easier. The only two reliable glues we’ve found are
Permatex 66B Clear RTV Silicone (not all silicone glues will work!) and Loctite Plastics
Bonding System, a 2-part cyanoacrylate glue. The Permatex 66B silicone can also be used
to seal the open end of a cut strip.
All strips are manufactured in 1/2 meter segments that are then joined into a longer strip.
The pixel spacing across these joins is 2-3 millimeters different than the rest.

Flora RGB Smart NeoPixel
(Version 2)

http://www.adafruit.com/products/1260 (http://adafru.it/1260)

Designed for wearables and “soft
circuits” — these individual NeoPixels can
be sewn in using our stainless conductive
thread (http://adafru.it/641).

Sold in packs of 4.

At peak output (white, max brightness),
each pixel draws about 60 milliamps.
Mixed colors and lower brightness
settings will use proportionally less
power.

Flora RGB Smart NeoPixel
(Version 1)

Discontinued, but listed here for
compatibility information. This earlier
version of our Flora NeoPixel can be
identified by a small driver chip on the
back side (now integrated into the LED in
Version 2).

The V1 and V2 pixels aren’t
interchangeable; each has different
signal requirements. A project can mix
both types if they’re on separate pins; all
V1 pixels on one pin, all V2 on another.

The V1 pixels were originally
programmed using the Adafruit_FloraPixel
library. All new code should instead use
the Adafruit_NeoPixel
library (http://adafru.it/aZU), which
handles both types.

© Adafruit Industries http://learn.adafruit.com/adafruit-neopixel-uberguide Page 6 of 28

http://learn.adafruit.com/assets/10497
http://www.adafruit.com/products/1260
http://www.adafruit.com/products/641
http://learn.adafruit.com/assets/10496
https://github.com/adafruit/Adafruit_NeoPixel

Breadboard-friendly RGB Smart
NeoPixel

http://www.adafruit.com/products/1312 (http://adafru.it/1312)

Functionally similar to our Flora (V2) pixels
above, but designed for use with
breadboards rather than sewing.

Sold in packs of 4. Use in breadboards
requires soldering on header pins, sold
separately (http://adafru.it/392).

NeoPixel Stick

http://www.adafruit.com/products/1426 (http://adafru.it/1426)

This features 8 NeoPixel LEDs on a rigid
circuit board packed even more tightly
than the flex strips. There are solder
pads on the back for connecting wires or
breadboard pins (not included). Can be
chained end-to-end to create a longer
stick.

NeoMatrix 8x8: 64 RGB LED Pixel
Matrix

http://www.adafruit.com/products/1487 (http://adafru.it/1487)

An 8-by-8 matrix of NeoPixel LEDs (64
LEDs total), all controlled from a single
microcontroller pin. Can be chained, and
the LED spacing and board size are
designed for seamless tiling.

A substantial power supply is
recommended. At peak brightness (all
LEDs on, brightest white) the matrix can
draw just over 3.5 Amps at 5 Volts. Mixed
colors and lower brightness settings will
use proportionally less power.

NeoPixel Shield for Arduino: 40
RGB LED Pixel Matrix

http://www.adafruit.com/products/1430 (http://adafru.it/1430)

A smaller 5x8 matrix designed to plug
directly atop an Arduino board (but can
also be tiled separately if desired).

If the overall brightness is carefully
limited, the shield can be directly
powered from the Arduino. For most
situations, connecting an external 5V
power supply is recommended. At peak
brightness, the matrix can draw about 2.4
Amps at 5 Volts (the Arduino can only
supply about 500 milliamps).

© Adafruit Industries http://learn.adafruit.com/adafruit-neopixel-uberguide Page 7 of 28

http://learn.adafruit.com/assets/10495
http://www.adafruit.com/products/1312
http://www.adafruit.com/products/392
http://learn.adafruit.com/assets/10500
http://www.adafruit.com/products/1426
http://learn.adafruit.com/assets/10599
http://www.adafruit.com/products/1487
http://learn.adafruit.com/assets/10499
http://www.adafruit.com/products/1430

NeoPixel Ring

http://www.adafruit.com/products/1463 (http://adafru.it/1463)

16 NeoPixel LEDs in a circular
arrangement with the center cut out.
Perfect for jewelry, spectacles, rotary
knob feedback or whatever else your
imagination can dream up.

Outside diameter is 1.75 inches (44.5
millimeters). Can be chained. Each ring
may require up to 1 Amp at maximum
brightness.

WS2812 5050 RGB LED

http://www.adafruit.com/products/1379 (http://adafru.it/1379)

For advanced users who want to develop
their own circuits and device form-
factors, this is the “raw” NeoPixel LED
with integrated driver.

Sold in packs of 10.

This is a surface-mount device, not
recommended for novice soldering. For
through-hole use, consider Breadboard-
Friendly NeoPixels (http://adafru.it/1312).

WS2811 LED Driver Chip

http://www.adafruit.com/products/1378 (http://adafru.it/1378)

The heart of “V1” Flora NeoPixels, this is
the PWM driver independent of the RGB
LED, so you can use other LED form-
factors or colors. The protocol is slightly
different from most other NeoPixel
devices and they’re not directly
interchangeable, but a project can mix
both types if they’re on separate
microcontroller pins. The
Adafruit_NeoPixel
library (http://adafru.it/aZU) supports
both types.

Sold in packs of 10.

© Adafruit Industries http://learn.adafruit.com/adafruit-neopixel-uberguide Page 8 of 28

http://learn.adafruit.com/assets/10498
http://www.adafruit.com/products/1463
http://learn.adafruit.com/assets/10506
http://www.adafruit.com/products/1379
http://www.adafruit.com/products/1312
http://learn.adafruit.com/assets/10505
http://www.adafruit.com/products/1378
https://github.com/adafruit/Adafruit_NeoPixel

Arduino Library

Controlling NeoPixels “from scratch” is quite a challenge, so we provide a library letting you
focus on the fun and interesting bits. The library works with most mainstream Arduino boards
and derivatives: Uno, Mega, Leonardo, Micro, Adafruit Flora, etc. — most anything with an Atmel
AVR 8-bit processor from 8 to 16 MHz — and also works with the Arduino Due and all varieties
of the PJRC Teensy boards.

Because processor-specific assembly language is used, this library does not work on
Netduino, ChipKIT or other advanced “Arduino-like” boards. Others may have written code and
libraries for such boards, but we can’t provide technical support for any bugs or trouble there;
that’s frontier stuff. Some of this is covered in the “Advanced Coding” section.

Installation of the library is as follows:
1. Visit the Adafruit_NeoPixel library page (http://adafru.it/aZU) at Github.com.
2. Select the “Download ZIP” button, or simply click this link (http://adafru.it/cDj) to download

directly.
3. Uncompress the ZIP file after it’s finished downloading.
4. The resulting folder should contain the files “Adafruit_NeoPixel.cpp”, “Adafruit_NeoPixel.h”

and an “examples” sub-folder. Sometimes in Windows you’ll get an intermediate-level
folder and need to move things around.

5. Rename the folder (containing the .cpp and .h files) to “Adafruit_NeoPixel” (with the
underscore and everything), and place it alongside your other Arduino libraries, typically in
your (home folder)/Documents/Arduino/Libraries folder. Libraries should not be installed
alongside the Arduino application itself.

6. Re-start the Arduino IDE if it’s currently running.

Here’s a tutorial (http://adafru.it/aYM) that walks through the process of correctly installing
Arduino libraries.

Basic Connections

To get started, let’s assume you have some model of Arduino microcontroller connected to
the computer’s USB port. We’ll elaborate on the finer points of powering NeoPixels later, but for
now you should use a separate 5V DC power supply (or a 3.7V lithium-ion battery for a Flora
wearable project).

Identify the “input” end of your NeoPixel strip, pixel(s) or other device. On some, there will be a
solder pad labeled “DIN” or “DI” (data input). Others will have an arrow showing the direction
that data moves. The data input can connect to any digital pin on the Arduino, but all the
example code is set up for digital pin 6 by default. The NeoPixel shield comes wired this way.

If using Flora with an attached lithium-ion battery: connect the +5V input on the strip
to the VBATT pad on Flora, GND from the strip to any GND pad on Flora, and DIN to Flora pin D6.

For other Arduino boards with a separate +5V DC power supply for the
NeoPixels: connect the +5V input on the strip to the + (positive) terminal on the power
supply (don’t connect to the Arduino), DIN to digital pin 6 on the Arduino, and – (minus or GND)
on the strip must connect to both the minus (–) terminal on the DC supply and a GND pin on the
Arduino (there are usually several — any will do).

The 144 pixel strips are so tightly packed, there’s no room for labels other than –, + and the
data direction arrows. Data in/out is the un-labeled pad.

© Adafruit Industries http://learn.adafruit.com/adafruit-neopixel-uberguide Page 9 of 28

https://github.com/adafruit/Adafruit_NeoPixel
https://github.com/adafruit/Adafruit_NeoPixel/archive/master.zip
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

Can NeoPixels be powered directly from the Arduino’s 5V pin?
Sometimes. The Arduino can continuously supply only about 500 milliamps to the 5V pin.

Each NeoPixel can draw up to 60 milliamps at full brightness. So yes, you can skip the separate
DC supply and power directly off the Arduino as long as just a few pixels are used, or more if
the colors and overall brightness are low. When in doubt, give the pixels a separate power
supply.

Sometimes. The Arduino can continuously supply only about 500 milliamps to the
5V pin. Each NeoPixel can draw up to 60 milliamps at full brightness. So yes, you can skip the
separate DC supply and power directly off the Arduino <i>as long as just a few pixels are
used,</i> or more if the colors and overall brightness are low. When in doubt, give the
pixels a separate power supply.

A Simple Code Example: strandtest

Launch the Arduino IDE. From the File menu, select
Sketchbook®®Libraries®®Adafruit_NeoPixel®®strandtest

(If the Adafruit_NeoPixel rollover menu is not present, the library has not been correctly
installed, or the IDE needs to be restarted after installation. Check the installation steps above
to confirm it’s properly named and located.)

Select your board type and serial port from the Tools menu, and try uploading to the board. If
the NeoPixels are connected and powered, you should see a little light show.

Nothing happens!
Check your connections. The most common mistake is connecting to the output end of a

strip rather than the input.
Check your connections. The most common mistake is connecting to the output end of a
strip rather than the input.

Let’s look at the code now…

All NeoPixel sketches begin by including the header file:

The block of code that follows is mostly descriptive comments. Only the last line is really doing
any work:

#include <Adafruit_NeoPixel.h>

#define PIN 6

// Parameter 1 = number of pixels in strip
// Parameter 2 = pin number (most are valid)
// Parameter 3 = pixel type flags, add together as needed:
// NEO_KHZ800 800 KHz bitstream (most NeoPixel products w/WS2812 LEDs)
// NEO_KHZ400 400 KHz (classic 'v1' (not v2) FLORA pixels, WS2811 drivers)

© Adafruit Industries http://learn.adafruit.com/adafruit-neopixel-uberguide Page 10 of 28

The first line assigns a number to the symbol “PIN” for later reference. It doesn’t need to be
done this way, but makes it easier to change the pin where the NeoPixels are connected
without digging deeper into the code.

The last line declares a NeoPixel object. We’ll refer to this by name later to control the strip of
pixels. There are three parameters or arguments in parenthesis:
1. The number of sequential NeoPixels in the strip. In the example this is set to 60, equal to 1

meter of medium-density strip. Change this to match the actual number you’re using.
2. The pin number to which the NeoPixel strip (or other device) is connected. Normally this

would be a number, but we previously declared the symbol PIN to refer to it by name here.
3. A value indicating the type of NeoPixels that are connected. In most cases you can

leave this off and pass just two arguments; the example code is just being extra
descriptive. If you have a supply of classic “V1” Flora pixels, those require NEO_KHZ400 +
NEO_RGB to be passed here.

Then, in the setup() function, call begin() to prepare the data pin for NeoPixel output:

The second line, strip.show(), isn’t absolutely necessary, it’s just there to be thorough. That
function pushes data out to the pixels…since no colors have been set yet, this initializes all the
NeoPixels to an initial “off” state in case some were left lit by a prior program.

In the strandtest example, loop() doesn’t set any pixel colors on its own — it calls other
functions that create animated effects. So let’s ignore it for now and look ahead, inside the
individual functions, to see how the strip is controlled.

There are two ways to set the color of a pixel. The first is:

The first argument — n in this example — is the pixel number along the strip, starting from 0
closest to the Arduino. If you have a strip of 30 pixels, they’re numbered 0 through 29. It’s a
computer thing. You’ll see various places in the code using a for loop, passing the loop counter
variable as the pixel number to this function, to set the values of multiple pixels.

The next three arguments are the pixel color, expressed as red, green and blue brightness
levels, where 0 is dimmest (off) and 255 is maximum brightness.

To set the 12th pixel (#11, counting from 0) to magenta (red + blue), you could write:

An alternate syntax has just two arguments:

Here, color is a 32-bit type that merges the red, green and blue values into a single number.
This is sometimes easier or faster for some (but not all) programs to work with; you’ll see the

// NEO_KHZ400 400 KHz (classic 'v1' (not v2) FLORA pixels, WS2811 drivers)
// NEO_GRB Pixels are wired for GRB bitstream (most NeoPixel products)
// NEO_RGB Pixels are wired for RGB bitstream (v1 FLORA pixels, not v2)
Adafruit_NeoPixel strip = Adafruit_NeoPixel(60, PIN, NEO_GRB + NEO_KHZ800);

void setup() {
 strip.begin();
 strip.show(); // Initialize all pixels to 'off'
}

strip.setPixelColor(n, red, green, blue);

strip.setPixelColor(11, 255, 0, 255);

strip.setPixelColor(n, color);

© Adafruit Industries http://learn.adafruit.com/adafruit-neopixel-uberguide Page 11 of 28

strandtest code uses both syntaxes in different places.

You can also convert separate red, green and blue values into a single 32-bit type for later use:

Then later you can just pass “magenta” as an argument to setPixelColor rather than the
separate red, green and blue numbers every time.

setPixelColor() does not have an immediate effect on the LEDs. To “push” the color data to the
strip, call show():

This updates the whole strip at once, and despite the extra step is actually a good thing. If
every call to setPixelColor() had an immediate effect, animation would appear jumpy rather than
buttery smooth.

You can query the color of a previously-set pixel using getPixelColor():

This returns a 32-bit merged color value.

The number of pixels in a previously-declared strip can be queried using numPixels():

The overall brightness of all the LEDs can be adjusted using setBrightness(). This takes a single
argument, a number in the range 0 (off) to 255 (max brightness). For example, to set a strip to
1/4 brightness:

Just like setPixel(), this does not have an immediate effect. You need to follow this with
a call to show().

You can’t move from a lower brightness to a higher setting without some loss in fidelity. Certain
animation effects are better served by leaving the brightness at max and calling setPixel()
repeatedly to fill the strip.

I’m calling setPixel() but nothing’s happening!
There are two main culprits for this:

1. forgetting to call strip.begin() in setup().
2. forgetting to call strip.show() after setting pixel colors.

Another (less common) possibility is running out of RAM — see the last section below. If the
program sort of works but has unpredictable results, consider that.

There are two main culprits for this:
 forgetting to call <span class="editor-
monospace">strip.begin() in <span class="editor-
monospace">setup(). forgetting to call <span class="editor-
monospace">strip.show() after setting pixel colors. Another (less
common) possibility is running out of RAM — see the last section below. If the program
<i>sort of</i> works but has unpredictable results, consider that.

Can I have multiple NeoPixel objects on different pins?

uint32_t magenta = strip.Color(255, 0, 255);

strip.show();

uint32_t color = strip.getPixelColor(11);

uint16_t n = strip.numPixels();

strip.setBrightness(64);

© Adafruit Industries http://learn.adafruit.com/adafruit-neopixel-uberguide Page 12 of 28

Certainly! Each requires its own declaration with a unique name:
Certainly! Each requires its own declaration with a unique name:

The above declares two distinct NeoPixel objects, one each on pins 5 and 6, each containing
16 pixels and using the implied default type (NEO_KHZ800 + NEO_GRB).

Can I connect multiple NeoPixel strips to the same Arduino pin?
In many cases, yes. All the strips will then show exactly the same thing. This only works up to

a point though…four strips on a single pin is a good and reliable number. If you need more than
that, individual NeoPixels can be used as buffers to “fan out” to more strips: connect one
Arduino pin to the inputs of four separate NeoPixels, then connect each pixels’ output to the
inputs of four strips (or fewer, if you don’t need quite that many). If the strips are 10 pixels long,
declare the NeoPixel object as having 11 pixels. The extra “buffer” pixels will be at position #0
— just leave them turned off — and the strips then run from positions 1 through 10.

In many cases, yes. All the strips will then show exactly the same thing. This only works up
to a point though…four strips on a single pin is a good and reliable number. If you need more
than that, individual NeoPixels can be used as buffers to “fan out” to more strips: connect
one Arduino pin to the inputs of four separate NeoPixels, then connect each pixels’ output to
the inputs of four strips (or fewer, if you don’t need quite that many). If the strips are 10
pixels long, declare the NeoPixel object as having 11 pixels. The extra “buffer” pixels will be
at position #0 — just leave them turned off — and the strips then run from positions 1
through 10.

Pixels Gobble RAM

Each NeoPixel requires about 3 bytes of RAM. This doesn’t sound like very much, but when you
start using dozens or even hundreds of pixels, and consider that the mainstream Arduino Uno
only has 2 kilobytes of RAM (often much less after other libraries stake their claim), this can be
a real problem!

For using really large numbers of LEDs, you might need to step up to a more potent board like
the Arduino Mega or Due. But if you’re close and need just a little extra space, you can
sometimes tweak your code to be more RAM-efficient. This tutorial has some pointers on
memory usage. (http://adafru.it/coj)

Adafruit_NeoPixel strip_a = Adafruit_NeoPixel(16, 5);
Adafruit_NeoPixel strip_b = Adafruit_NeoPixel(16, 6);

© Adafruit Industries http://learn.adafruit.com/adafruit-neopixel-uberguide Page 13 of 28

http://learn.adafruit.com/memories-of-an-arduino

Powering NeoPixels

NeoPixels are usually described as “5 Volt devices,” but the reality is a little more nuanced than
that.

Some (not all) NeoPixel products can work with slightly higher voltages. This depends on the
additional support components around the chip, based on available space, cost and the most
likely application. Refer to the specific product description page for guidance on
acceptable voltage limits for each type. When in doubt, aim for 5 Volts.

Lower voltages are always acceptable, with the caveat that the LEDs will be slightly
dimmer. There’s a limit below which the LED will fail to light, or will start to show the wrong color.

Before connecting a NeoPixel
strip to ANY source of power, we
very strongly recommend adding
a large capacitor (1000 µF, 6.3V
or higher) across the + and –
terminals. This prevents the initial
onrush of current from damaging
the pixels.

For many wearable projects we
recommend a lithium-polymer
battery (http://adafru.it/328). These
deliver 3.7 Volts — perfect for directly
feeding low-power microcontrollers such
as the Adafruit Flora, yet enough voltage
to run a short length of NeoPixels.

Three alkaline cells (such as AA
batteries) can be installed in a battery
holder (http://adafru.it/771) to provide
4.5 Volts. Though larger and heaver than
the fancy lithium-polymer pack, they’re
inexpensive and readily available.

When connecting NeoPixels to any live power source or microcontroller, ALWAYSWhen connecting NeoPixels to any live power source or microcontroller, ALWAYS
CONNECT GROUND (–) BEFORE ANYTHING ELSE. Conversely, disconnect ground lastCONNECT GROUND (–) BEFORE ANYTHING ELSE. Conversely, disconnect ground last
when separating.when separating.

Adding a ~470 ohm resistor between your microcontroller's data pin and the dataAdding a ~470 ohm resistor between your microcontroller's data pin and the data
input on the NeoPixels can help prevent spikes on the data line that can damageinput on the NeoPixels can help prevent spikes on the data line that can damage
your first pixel. Please add one between your micro and NeoPixels!your first pixel. Please add one between your micro and NeoPixels!

© Adafruit Industries http://learn.adafruit.com/adafruit-neopixel-uberguide Page 14 of 28

http://learn.adafruit.com/assets/11763
http://learn.adafruit.com/assets/10710
http://www.adafruit.com/products/328
http://learn.adafruit.com/assets/10711
http://www.adafruit.com/products/771

Four nickel-metal hydride (NiMH)
rechargeable cells can similarly be used
in a 4-cell battery
holder (http://adafru.it/830) to provide 4.8
Volts.

Make sure you only use NiMH
cells in this configuration. Four
alkaline cells (the disposable type) will
output 6V total — that’s too high for
some NeoPixels, and definitely too much
for the microcontroller!

Battery-operated LED project planning is discussed in greater detail in Battery
Power for LED Pixels and Strips (http://adafru.it/cDU).

For most non-portable “desktop”
projects, a 5V DC switching power
supply (http://adafru.it/276) is ideal. This
small 2 Amp supply is good for a a meter
or so of NeoPixel strip. We’ll explain
larger projects in a moment.

Be extremely cautious with bench
power supplies. Some — even
reputable, well-regarded brands — can
produce a large voltage spike when
initially switched on, instantly destroying
your NeoPixels!

If you use a bench supply, do not
connect NeoPixels directly. Turn on the
power supply first, let the voltage
stabilize, then connect the pixels (GND
first).

Estimating Power Requirements

Each individual NeoPixel draws up to 60 milliamps at maximum brightness white (red + green +
blue). In actual use though, it’s rare for all pixels to be turned on that way. When mixing colors
and displaying animations, the current draw will be much less. It’s impossible to estimate a
single number for all circumstances, but we’ve been using 1/3 this (20 mA per pixel) as a gross
rule of thumb with no ill effects. But if you know for a fact that you need every pixel on at
maximum brightness, use the full 60 mA figure.

To estimate power supply needs, multiply the number of pixels by 20, then divide the result by
1,000 for the “rule of thumb” power supply rating in Amps. Or use 60 (instead of 20) if you want
to guarantee an absolute margin of safety for all situations. For example:

60 NeoPixels × 20 mA ÷ 1,000 = 1.2 Amps minimum
60 NeoPixels × 60 mA ÷ 1,000 = 3.6 Amps minimum

The choice of “overhead” in your power supply is up to you. Maximum safety and reliability are
achieved with a more generously-sized power supply, and this is what we recommend. Most
power supplies can briefly push a little extra current for short periods. Many contain a thermal
fuse and will simply shut down if overworked. So they may technically work, but this is the
electronics equivalent of abusing a rental car.

© Adafruit Industries http://learn.adafruit.com/adafruit-neopixel-uberguide Page 15 of 28

http://learn.adafruit.com/assets/10712
http://www.adafruit.com/products/830
http://learn.adafruit.com/battery-power-for-led-pixels-and-strips/overview
http://learn.adafruit.com/assets/10713
http://www.adafruit.com/products/276
http://learn.adafruit.com/assets/10717

I estimate I need a 3.6 Amp power supply. I have a 10 Amp supply on-hand. Will this cause
my NeoPixels to explode?

As long as the output is 5 Volts DC, you’re golden. The LEDs will only draw as much current
(Amperes) as they need. So extra Amps are OK — in fact, it can be a good thing. The larger
power supply will run cooler because it’s not being pushed to its limit.

Excessive voltage, however, will definitely kill your LEDs.

Extra Amps = good. Extra Volts = bad.
As long as the output is 5 Volts DC, you’re golden. The LEDs will only draw as much current
(Amperes) as they need. So extra Amps are OK — in fact, it can be a <i>good</i> thing.
The larger power supply will run cooler because it’s not being pushed to its
limit.

Excessive <i>voltage,</i> however, will definitely kill your
LEDs.

Extra Amps = good. Extra Volts = bad.

What about batteries and “Amp hours”?
Amp-hours are current over time. A 2,600 mAh (milliamp-hour) battery can be thought of as

delivering 2.6 Amps continuously for one hour, or 1.3 Amps for 2 hours, and so forth. In reality,
it’s not quite linear like that; most batteries have disproportionally shorter run times with a
heavy load. Also, most batteries won’t take kindly to being discharged in an hour — this can
even be dangerous! Select a battery sufficiently large that it will take at least a couple hours
to run down. It’s both safer for you and better for the longevity of the battery.

Amp-hours are current over time. A 2,600 mAh (milliamp-hour) battery can be thought of as
delivering 2.6 Amps continuously for one hour, or 1.3 Amps for 2 hours, and so forth. In
reality, it’s not quite linear like that; most batteries have disproportionally shorter run times
with a heavy load. Also, most batteries won’t take kindly to being discharged in an hour —
this can even be dangerous! Select a battery sufficiently large that it will take
<u>at least</u> a couple hours to run down. It’s both safer for you and better for the
longevity of the battery.

I need to power LOTS of NeoPixels and don’t have a power supply that large. Can I use
several smaller ones?

Maybe. There are benefits to using a single supply, and large power supplies are discussed
below. “Non-optimal” doesn’t necessarily mean “pessimal” though, and we wouldn’t
discourage anyone from using what resources they have.

If you go this route, the key is to have all of the ground pins among the strips connected in
common, but the +5V from each power supply should be connected only to one length of
NeoPixels — those should not all be joined. Every power supply is a little different — not
precisely 5 Volts — and this keeps some from back-feeding into others.

Maybe. There are benefits to using a single supply, and large power supplies are
discussed below. “Non-optimal” doesn’t necessarily mean “pessimal” though, and we
wouldn’t discourage anyone from using what resources they have.

If you go this
route, the key is to have all of the ground pins among the strips connected in common, but
the +5V from each power supply should be connected only to <u>one</u> length of
NeoPixels — those should <i>not</i> all be joined. Every power supply is a little different —
not <i>precisely</i> 5 Volts — and this keeps some from back-feeding into others.

Giant Power Supplies

Adafruit offers 5V DC power supplies up to 10 Amps (http://adafru.it/658). This is usually
sufficient for a couple hundred NeoPixels or more. For really large installations, you’ll need to
look elsewhere.

One possibility is to repurpose an ATX computer power supply. The nice beefy server types
often provide up to 30 Amps. Some minor modifications are needed…Google around for “ATX
power supply hack.”

Even larger (and scarier, and much more expensive) are laboratory power supplies with ratings
into the hundreds of Amps. Sometimes this is what’s needed for architectural scale projects
and large stage productions. And occasionally we get requests for help…

Please note that projects of this scale are potentially very dangerous, and the

© Adafruit Industries http://learn.adafruit.com/adafruit-neopixel-uberguide Page 16 of 28

http://www.adafruit.com/products/658

problems of power distribution are fundamentally different than hobby-scale projects. As much
as we enjoy helping our customers in the forums, they are for product technical support and
not full-on engineering services. If you’re developing a project of this scope, hire a
professional electrician with experience in high-power, low-voltage systems such as
photovoltaics or large RVs and boats. This is no charade.

Distributing Power

The longer a wire is, the more resistance it has. The more resistance, the more voltage drops
along its length. If voltage drops too far, the color of NeoPixels can be affected.

Consider a full 4 meter reel of NeoPixels. With 5V applied at one end of the strip, for those
pixels closest to this end, power traverses only a few inches of copper. But at the far end of
the strip, power traverses 8 meters of copper — 4 meters out on the +5V line, 4 meters back
on the ground line. Those furthest pixels will be tinted brown due to the voltage drop (blue and
green LEDs require higher voltage than red).

Pro Tip: NeoPixels don’t care what end they receive power from. Though data moves in only
one direction, electricity can go either way. You can connect power at the head, the tail, in the
middle, or ideally distribute it to several points. Try to aim for about 1 meter lengths for the
best color consistency. With larger NeoPixel setups, think of power distribution as branches of
a tree rather than one continuous line.

Resistance is just as much a concern on
tiny projects too!

For wearable electronics we like
conductive thread…it’s flexible and
withstands hand washing. Downside is
that it doesn’t carry much current. Here
several strands of conductive thread
have been grouped to provide better
capacity for the + and – conductors
down a pair of suspenders.

(From the Pac Man Pixel
Suspenders (http://adafru.it/ciD) guide.)

Driving 5V NeoPixels from 3.3V Microcontrollers

Increasingly, microcontrollers are running at 3.3 Volts instead of 5 Volts.That’s great news for
efficiency, but can present a communication problem with 5V NeoPixels. The 3.3V signal from
the microcontroller may not be “loud” enough to register with the higher-voltage device. The
manufacturer recommends a minimum signal voltage of 70% of the NeoPixel voltage.

There are two ways this can be addressed:
1. Lower the voltage to the NeoPixels so it’s closer (or equal) to that of the microcontroller.

This is why we recommend LiPo batteries for FLORA projects: 3.7V is enough to run a short
length of pixels, and the microcontroller is comfortable at that voltage as well.

2. Use a logic level shifter (http://adafru.it/757) to step up the signal from the microcontroller

© Adafruit Industries http://learn.adafruit.com/adafruit-neopixel-uberguide Page 17 of 28

http://learn.adafruit.com/assets/10718
http://learn.adafruit.com/pac-man-pixel-suspenders
http://www.adafruit.com/products/757

to the first pixel.

© Adafruit Industries http://learn.adafruit.com/adafruit-neopixel-uberguide Page 18 of 28

NeoMatrix Library

The Adafruit_NeoMatrix library builds upon Adafruit_NeoPixel to create two-dimensional graphic
displays using NeoPixels. You can then easily draw shapes, text and animation without having to
calculate every X/Y pixel position. Small NeoPixel matrices are available in the shop. Larger
displays can be formed using sections of NeoPixel strip, as shown in the photo above.

In addition to the Adafruit_NeoPixel library (which was already downloaded and installed in a
prior step), NeoMatrix requires two additional libraries:
1. Adafruit_NeoMatrix (http://adafru.it/cDt)
2. Adafruit_GFX (http://adafru.it/cBB)

If you’ve previously used any Adafruit LCD or OLED displays, you might already have the latter
library installed.

Installation for both is similar to Adafruit_NeoPixel before: unzip, make sure the folder name
matches the .cpp and .h files within, then move to your Arduino libraries folder and restart the
IDE.

Arduino sketches need to include all three headers just to use this library:

The extra ifdef/define/endif lines are only needed if you’re using an Arduino Due. Otherwise
they can be left out.

Layouts

Adafruit_NeoMatrix uses exactly the same coordinate system, color functions and graphics
commands as the Adafruit_GFX library. If you’re new to the latter, a separate tutorial explains its
use (http://adafru.it/aPe). There are also example sketches included with the
Adafruit_NeoMatrix library.

We’ll just focus on the constructor here — how to declare a two-dimensional display made
from NeoPixels. Powering the beast is another matter, covered on the prior page.

The library handles both single matrices — all NeoPixels in a single uniform grid — and tiled
matrices — multiple grids combined into a larger display:

#include <Adafruit_GFX.h>
#include <Adafruit_NeoMatrix.h>
#include <Adafruit_NeoPixel.h>
#ifndef PSTR
 #define PSTR // Make Arduino Due happy
#endif

© Adafruit Industries http://learn.adafruit.com/adafruit-neopixel-uberguide Page 19 of 28

https://github.com/adafruit/Adafruit_NeoMatrix/archive/master.zip
https://github.com/adafruit/Adafruit-GFX-Library/archive/master.zip
http://learn.adafruit.com/adafruit-gfx-graphics-library/overview

Let’s begin with the declaration for a single matrix, because it’s simpler to explain. We’ll be
demonstrating the NeoPixel Shield for Arduino in this case — an 8x5 matrix of NeoPixels. When
looking at this shield with the text in a readable orientation, the first pixel, #0, is at the top left.
Each successive pixel is right one position — pixel 1 is directly to the right of pixel 0, and so
forth. At the end of each row, the next pixel is at the left side of the next row. This isn’t
something we decide in code…it’s how the NeoPixels are hard-wired in the circuit board
comprising the shield.

We refer to this layout as row major and progressive. Row major means the pixels are
arranged in horizontal lines (the opposite, in vertical lines, is column major). Progressive
means each row proceeds in the same direction. Some matrices will reverse direction on each
row, as it can be easier to wire that way. We call that a zigzag layout.

However…for this example, we want to use the shield in the “tall” direction, so the Arduino is
standing up on the desk with the USB cable at the top. When we turn the board this way, the
matrix layout changes…

© Adafruit Industries http://learn.adafruit.com/adafruit-neopixel-uberguide Page 20 of 28

Now the first pixel is at the top right. Pixels increment top-to-bottom — it’s now column
major. The order of the columns is still progressive though.

We declare the matrix thusly:

The first two arguments — 5 and 8 — are the width and height of the matrix, in pixels. The third
argument — 6 — is the pin number to which the NeoPixels are connected. On the shield this is
hard-wired to digital pin 6, but standalone matrices are free to use other pins.

The next argument is the interesting one. This indicates where the first pixel in the matrix is
positioned and the arrangement of rows or columns. The first pixel must be at one of the four
corners; which corner is indicated by adding either NEO_MATRIX_TOP or NEO_MATRIX_BOTTOM
to either NEO_MATRIX_LEFT or NEO_MATRIX_RIGHT. The row/column arrangement is indicated
by further adding either NEO_MATRIX_COLUMNS or NEO_MATRIX_ROWS to either
NEO_MATRIX_PROGRESSIVE or NEO_MATRIX_ZIGZAG. These values are all added to form a
single value as in the above code.

NEO_MATRIX_TOP + NEO_MATRIX_RIGHT + NEO_MATRIX_COLUMNS +
NEO_MATRIX_PROGRESSIVE

The last argument is exactly the same as with the NeoPixel library, indicating the type of LED
pixels being used. In the majority of cases with the latest NeoPixel products, you can simply
leave this argument off…the example code is just being extra descriptive.

The point of this setup is that the rest of the sketch never needs to think about
the layout of the matrix. Coordinate (0,0) for drawing graphics will always be
at the top-left, regardless of the actual position of the first NeoPixel.

Adafruit_NeoMatrix matrix = Adafruit_NeoMatrix(5, 8, 6,
 NEO_MATRIX_TOP + NEO_MATRIX_RIGHT +
 NEO_MATRIX_COLUMNS + NEO_MATRIX_PROGRESSIVE,
 NEO_GRB + NEO_KHZ800);

© Adafruit Industries http://learn.adafruit.com/adafruit-neopixel-uberguide Page 21 of 28

Why not just use the rotation feature in Adafruit_GFX?
Adafruit_GFX only handles rotation. Though it would handle our example above, it doesn’t

cover every permutation of rotation and mirroring that may occur with certain matrix layouts,
not to mention the zig-zag capability, or this next bit…

Adafruit_GFX only handles rotation. Though it would handle our example above, it doesn’t
cover every permutation of rotation <i>and mirroring</i> that may occur with certain matrix
layouts, not to mention the zig-zag capability, or this next bit…

Tiled Matrices

A tiled matrix is comprised of multiple smaller NeoPixel matrices. This is sometimes easier for
assembly or for distributing power. All of the sub-matrices need to be the same size, and must
be ordered in a predictable manner. The Adafruit_NeoMatrix() constructor then receives some
additional arguments:

The first two arguments are the width and height, in pixels, of each tiled sub-matrix, not the
entire display.

The next two arguments are the number of tiles, in the horizontal and vertical direction. The
dimensions of the overall display then will always be a multiple of the sub-matrix dimensions.

The fifth argument is the pin number, same as before and as with the NeoPixel library. The last
argument also follows prior behaviors, and in most cases can be left off.

The second-to-last argument though…this gets complicated…

With a single matrix, there was a starting corner, a major axis (rows or columns) and a line
sequence (progressive or zigzag). This is now doubled — similar information is needed both for
the pixel order within the individual tiles, and the overall arrangement of tiles in the display. As
before, we add up a list of symbols to produce a single argument describing the display
format.

The NEO_MATRIX_* symbols work the same as in the prior single-matrix case, and now refer to
the individual sub-matrices within the overall display. All tiles must follow the same format. An
additional set of symbols work similarly to then describe the tile order.

The first tile must be located at one of the four corners. Add either NEO_TILE_TOP or
NEO_TILE_BOTTOM and NEO_TILE_LEFT or NEO_TILE_RIGHT to indicate the position of the first
tile. This is independent of the position of the first pixel within the tiles; they can be different
corners.

Tiles can be arranged in horizontal rows or vertical columns. Again this is independent of the
pixel order within the tiles. Add either NEO_TILE_ROWS or NEO_TILE_COLUMNS.

Finally, rows or columns of tiles may be arranged in progressive or zigzag order; that is, every
row or column proceeds in the same order, or alternating rows/columns switch direction. Add
either NEO_TILE_PROGRESSIVE or NEO_TILE_ZIGZAG to indicate the order. BUT…if
NEO_TILE_ZIGZAG order is selected, alternate lines of tiles must be rotated 180 degrees. This
is intentional and by design; it keeps the tile-to-tile wiring more consistent and simple. This
rotation is not required for NEO_TILE_PROGRESSIVE.

Adafruit_NeoMatrix matrix = Adafruit_NeoMatrix(
 matrixWidth, matrixHeight, tilesX, tilesY, pin, matrixType, ledType);

© Adafruit Industries http://learn.adafruit.com/adafruit-neopixel-uberguide Page 22 of 28

Tiles don’t need to be square! The above is just one possible layout. The display shown at the
top of this page is three 10x8 tiles assembled from NeoPixel strip.

Once the matrix is defined, the remainder of the project is similar to Adafruit_NeoPixel.
Remember to use matrix.begin() in the setup() function and matrix.show() to update the display
after drawing. The setBrightness() function is also available. The library includes a couple of
example sketches for reference.

Other Layouts

For any other cases that are not uniformly tiled, you can provide your own function to remap
X/Y coordinates to NeoPixel strip indices. This function should accept two unsigned 16-bit
arguments (pixel X, Y coordinates) and return an unsigned 16-bit value (corresponding strip
index). The simplest row-major progressive function might resemble this:

That’s a crude example. Yours might be designed for pixels arranged in a spiral (easy wiring),
or a Hilbert curve.

The function is then enabled using setRemapFunction():

RAM Again

On a per-pixel basis, Adafruit_NeoMatrix is no more memory-hungry than Adafruit_NeoPixel,
requiring 3 bytes of RAM per pixel. But the number of pixels in a two-dimensional display takes
off exponentially…a 16x16 display requires four times the memory of an 8x8 display, or about
768 bytes of RAM (nearly half the available space on an Arduino Uno). It can be anywhere from
tricky to impossible to combine large displays with memory-hungry libraries such as SD or ffft.

Gamma Correction

Because the Adafruit_GFX library was originally designed for LCDs (having limited color fidelity),
it handles colors as 16-bit values (rather than the full 24 bits that NeoPixels are capable of). This
is not the big loss it might seem. A quirk of human vision makes bright colors less discernible
than dim ones. The Adafruit_NeoMatrix library uses gamma correction to select brightness
levels that are visually (though not numerically) equidistant. There are 32 levels for red and blue,
64 levels for green.

The Color() function performs the necessary conversion; you don’t need to do any math. It
accepts 8-bit red, green and blue values, and returns a gamma-corrected 16-bit color that can

uint16_t myRemapFn(uint16_t x, uint16_t y) {
 return WIDTH * y + x;
}

matrix.setRemapFunction(myRemapFn);

© Adafruit Industries http://learn.adafruit.com/adafruit-neopixel-uberguide Page 23 of 28

then be passed to other drawing functions.

© Adafruit Industries http://learn.adafruit.com/adafruit-neopixel-uberguide Page 24 of 28

Advanced Coding

Help! My Arduino servo code stops working when combined with NeoPixels!
Unfortunately the NeoPixel and Servo libraries don’t play nice together; one is dependent on

periodically disabling interrupts, the other absolutely requires interrupts. There are a couple of
options here:

Use a dedicated servo control shield (http://adafru.it/1411) or breakout
board (http://adafru.it/815), offloading that task from the processor so interrupts are a non-
issue.
Use a hardware-PWM-based servo library rather than the stock Arduino Servo library. This
can provide rock-steady servo timing without interrupts, but can only control a very limited
number of servos (2-3), and only on very specific pins. PWMServo (http://adafru.it/aTn)
appears to handle this…download “Paul’s version 2 library” from that page.

Unfortunately the NeoPixel and Servo libraries don’t play nice together; one is dependent on
periodically disabling interrupts, the other absolutely requires interrupts. There are a couple
of options here:
 Use a dedicated servo control shield<span class="pdf-
short-link"> (http://adafru.it/1411) or breakout board<span class="pdf-
short-link"> (http://adafru.it/815), offloading that task from the processor so
interrupts are a non-issue.
 Use a hardware-PWM-based servo library rather
than the stock Arduino Servo library. This can provide rock-steady servo timing without
interrupts, but can only control a very limited number of servos (2-3), and only on very
specific pins. PWMServo (http://adafru.it/aTn) appears to handle this…download
“Paul’s version 2 library” from that page.

How fast can I refresh a string of (N) pixels?
NeoPixels receive data from a fixed-frequency 800 KHz datastream (except for “V1” Flora

pixels, which use 400 KHz). One bit therefore requires 1/800,000 sec — 1.25 microseconds.
One pixel requires 24 bits (8 bits each for red, green blue) — 30 microseconds. After the last
pixel’s worth of data is issued, the stream must stop for at least 50 microseconds for the new
colors to “latch.”

For a strip of 100 pixels, that’s (100 * 30) + 50, or 3,050 microseconds. 1,000,000 / 3,050 =
328 updates per second, approximately.

However…

That’s only the time needed to push the bits down the wire. The actual refresh rate will be
something less than this, and can’t be estimated as a single number for all cases. It takes time
to process each “frame” of animation. How much time depends on the complexity of the math
and the efficiency of the code (for example, floating-point calculations can be relatively slow).
The technique above gives a maximum theoretical rate, but that’s just a starting point. Reality
in some cases could fall an order of magnitude (or more) below this.

For exploratory benchmarking, you can always write code as if a large number of pixels were
present, and time the result. The extra output bits will simply be ignored by the strip (or you can
even test with no NeoPixels connected at all).

NeoPixels receive data from a fixed-frequency 800 KHz datastream (except for “V1” Flora
pixels, which use 400 KHz). One bit therefore requires 1/800,000 sec — 1.25 microseconds.
One pixel requires 24 bits (8 bits each for red, green blue) — 30 microseconds. After the last
pixel’s worth of data is issued, the stream must stop for at least 50 microseconds for the
new colors to “latch.”

For a strip of 100 pixels, that’s (100 * 30) + 50, or 3,050
microseconds. 1,000,000 / 3,050 = 328 updates per second,
approximately.

However…

That’s only the time needed to
push the bits down the wire. The <i>actual</i> refresh rate will be something less than this,
and can’t be estimated as a single number for all cases. It takes time to process each
“frame” of animation. How much time depends on the complexity of the math and the
efficiency of the code (for example, floating-point calculations can be relatively slow). The

© Adafruit Industries http://learn.adafruit.com/adafruit-neopixel-uberguide Page 25 of 28

http://www.adafruit.com/products/1411
http://www.adafruit.com/products/815
http://arduiniana.org/libraries/pwmservo/

technique above gives a maximum <i>theoretical</i> rate, but that’s just a starting point.
Reality in some cases could fall an order of magnitude (or more) below this.

For
exploratory benchmarking, you can always write code <i>as if</i> a large number of pixels
were present, and time the result. The extra output bits will simply be ignored by the strip
(or you can even test with no NeoPixels connected at all).

That won’t do. Now what?
Because NeoPixels use a fixed-frequency clock, options are limited. You can’t switch out for

a faster microcontroller and expect substantially different results.

One option is to use a different LED type, such as our LPD8806 strips or WS2801 pixels. These
can be driven at higher data rates, though they do have some other tradeoffs with respect to
NeoPixels (cost, color resolution and/or pixel density).

Another is to develop your own code for a more capable microcontroller or an FPGA that drives
multiple NeoPixel strips in parallel. One such project — OctoWS2811 for the Teensy 3.0
microcontroller — is shown later. This sort of thing is a complex undertaking and not
recommended for beginners. And even among more experienced programmers, there’s often
an unreasonable over-emphasis on data rates when the real bottlenecks lie elsewhere…don’t
dwell on this too much unless you can confirm it’s a problem.

Because NeoPixels use a fixed-frequency clock, options are limited. You can’t switch out for
a faster microcontroller and expect substantially different results.

One option is to
use a different LED type, such as our LPD8806 strips or WS2801 pixels. These can be driven
at higher data rates, though they do have some other tradeoffs with respect to NeoPixels
(cost, color resolution and/or pixel density).

Another is to develop your own code
for a more capable microcontroller or an FPGA that drives <i>multiple</i> NeoPixel strips
<i>in parallel</i>. One such project — OctoWS2811 for the Teensy 3.0 microcontroller — is
shown later. This sort of thing is a complex undertaking and not recommended for
beginners. And even among more experienced programmers, there’s often an
unreasonable over-emphasis on data rates when the <i>real</i> bottlenecks lie
elsewhere…don’t dwell on this too much unless you can confirm it’s a problem.

Can I control NeoPixels using (Board X)?
We currently only offer an Arduino library. See the links later for other devices. For anything

beyond this, if considering writing your own library, understand that some devices are better
suited to the task than others. Read through the timing requirements shown below and
determine if the processor or device in question can synthesize a signal meeting those
specifications. An 8 MHz AVR can just barely keep up…anything slower may have trouble,
though some hardware-specific hacks (like clever use of SPI) might make it possible. In many
cases, assembly language is required.

We currently only offer an Arduino library. See the links later for other devices. For anything
beyond this, if considering writing your own library, understand that some devices are better
suited to the task than others. Read through the timing requirements shown below and
determine if the processor or device in question can synthesize a signal meeting those
specifications. An 8 MHz AVR can just barely keep up…anything slower may have trouble,
though some hardware-specific hacks (like clever use of SPI) might make it possible. In
many cases, assembly language is required.

Why not Raspberry Pi?
The Raspberry Pi running Linux is a multitasking system, and control may switch among

multiple running programs at any time. As such, it’s impossible to guarantee the strict 800 KHz
signal required by NeoPixels. You may be able to fudge it for short intervals, but it’s not
something that can be counted upon. This is why we use LPD8806 pixels for the Raspberry Pi
light painting (http://adafru.it/aPk) demonstration.

The Raspberry Pi running Linux is a multitasking system, and control may switch among
multiple running programs at any time. As such, it’s impossible to guarantee the strict 800
KHz signal required by NeoPixels. You may be able to fudge it for short intervals, but it’s not
something that can be counted upon. This is why we use LPD8806 pixels for the Raspberry Pi light
painting (http://adafru.it/aPk) demonstration.

Third-Party Libraries

NeoPixel-compatible libraries have been developed for devices beyond Arduino. Please keep

© Adafruit Industries http://learn.adafruit.com/adafruit-neopixel-uberguide Page 26 of 28

http://learn.adafruit.com/light-painting-with-raspberry-pi

in mind that Adafruit did not develop any of this code, does not know it inside and out, and can’t
fix bugs or offer technical help. This is Wild West stuff.

OctoWS2811 (http://adafru.it/cDM): specifically for the PJRC Teensy 3.0
microcontroller board. Uses DMA to drive up to 8 NeoPixel strips concurrently with minimal
processor load. Multiple boards can be cascaded for still larger displays.
FadeCandy (http://adafru.it/cDN): also for Teensy 3.0. Doesn’t support as many
pixels as OctoWS2811, but adds smooth interpolation and other features for the color-
persnickety.
LEDscape (http://adafru.it/cDO): specifically for BeagleBone Black. Although the
BeagleBone is a multitasking Linux system like the not-NeoPixel-compatible Raspberry Pi,
this code exploits hardware features specific to the BeagleBone Black to drive hundreds of
meters of NeoPixel strip with virtually no processor load.
WS2812 LED Driver (http://adafru.it/cDP) for Parallax Propeller.

WS2811? WS2812? Why do I see two different names mentioned?
The WS2811 is an earlier driver chip separate from the RGB LED. The data signal is similar,

but runs at half the speed. By the time the WS2812 (with integrated LED) was released, a lot of
code and projects had already built up around the WS2811 name. Sometimes code “for the
WS2811” might actually be for the newer chip, or for either type. The Adafruit_NeoPixel library
supports both.

The WS2811 is an earlier driver chip separate from the RGB LED. The data signal is similar,
but runs at half the speed. By the time the WS2812 (with integrated LED) was released, a lot
of code and projects had already built up around the WS2811 name. Sometimes code “for
the WS2811” might actually be for the newer chip, or for either type. The Adafruit_NeoPixel
library supports both.

Writing Your Own Library

The WS2812 datasheet (http://adafru.it/cDB) explains the data transmission protocol. This is a
self-clocking signal — there’s only one wire, not separate data and clock lines. “1” and “0” bits
are indicated by varying the duty cycle of a fixed-frequency square wave.

There’s a math goof in the datasheet’s timing values. Use these figures instead:

Note that there’s nearly 25% “wiggle room” in the timing. So if your code can’t match the
recommended times exactly, it’s usually okay.

Some of these are 3.3V devices. See the “Powering NeoPixel” page for notes onSome of these are 3.3V devices. See the “Powering NeoPixel” page for notes on
controlling 5V NeoPixels from 3.3V microcontrollers.controlling 5V NeoPixels from 3.3V microcontrollers.

© Adafruit Industries http://learn.adafruit.com/adafruit-neopixel-uberguide Page 27 of 28

http://www.pjrc.com/teensy/td_libs_OctoWS2811.html
https://github.com/scanlime/fadecandy
http://www.nycresistor.com/2013/07/27/ledscape/
http://obex.parallax.com/object/703
http://www.adafruit.com/datasheets/WS2812.pdf

There are three bytes of data for each pixel. These should be issued in green, red, blue order,
with the most-significant bit first.

The data for pixel #0 (nearest the microcontroller) is issued first, then pixel #1, and so forth to
the furthest pixel. This does not operate like a traditional shift register!

After all the color data is sent, the data line must be held low for a minimum of 50
microseconds for the new colors to “latch.”

You may want to dig through our Arduino library (http://adafru.it/aZU) for insights. The timing-
critial parts are written in AVR assembly language, but it’s extensively commented with C-like
pseudocode.

My Microcontroller Isn’t Fast Enough to Do That
The WS2812 appears to be backwardly-compatible with the 400 KHz WS2811 signal. If you

can precisely match the latter chip’s timing, either type will respond. The WS2811 protocol
is not simply a half-speed WS2812. The duty cycle for the “0” and “1” bits is slightly
different. From the WS2811 datasheet (http://adafru.it/cDS):

The WS2812 appears to be backwardly-compatible with the 400 KHz WS2811 signal. If you
can precisely match the latter chip’s timing, either type will respond. The WS2811
protocol is <u>not</u> simply a half-speed WS2812. The duty
cycle for the “0” and “1” bits is slightly different. From the <a
href="http://www.adafruit.com/datasheets/WS2811.pdf" title="Link:
http://www.adafruit.com/datasheets/WS2811.pdf">WS2811 datasheet (http://adafru.it/cDS):

© Adafruit Industries Last Updated: 2014-01-01 11:45:27 AM EST Page 28 of 28

https://github.com/adafruit/Adafruit_NeoPixel
http://www.adafruit.com/datasheets/WS2811.pdf

	Guide Contents
	The Magic of NeoPixels
	Important Things to Know About NeoPixels in General
	Adafruit NeoPixels are Available in the Following Products:
	Important Things to Know About NeoPixel Strips

	Arduino Library
	Basic Connections
	A Simple Code Example: strandtest
	Pixels Gobble RAM
	Powering NeoPixels
	Estimating Power Requirements
	Giant Power Supplies
	Distributing Power
	Driving 5V NeoPixels from 3.3V Microcontrollers
	NeoMatrix Library
	Layouts
	Tiled Matrices
	Other Layouts
	RAM Again
	Gamma Correction
	Advanced Coding
	Third-Party Libraries
	Writing Your Own Library

